skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Begun, ed., D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor. It is unclear whether its role in fertility had already evolved at that time or developed later in the lineage leading to D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila. 
    more » « less
  2. Abstract Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and divergence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation supports the existence of a hypothesized trade-off between the environment specificity of a gene’s expression and the strength of selection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of many variables in limiting plasticity evolution. 
    more » « less